

1

PharmaSUG2011 – Paper CD17

Making a List, Checking it Twice (Part 1): Techniques for Specifying and
Validating Analysis Datasets

Elizabeth Li, PharmaStat LLC, Newark, California

Linda Collins, PharmaStat LLC, Newark, California

ABSTRACT

In the CDISC era, biotechnology and pharmaceutical companies are paying increasing attention to how analysis
dataset specifications are documented and accuracy of datasets that are generated. It has always been a
desirable practice to record the details about analysis datasets, including the structure of the dataset, the source
of data variables, the logic of derivations, and methods of special data handling. For FDA submissions that
include analysis data model (ADaM) datasets, the analysis data specifications must be included in submission
documentation. The use of independent programming is increasingly a gold standard validation method. In this
paper, we describe techniques for leveraging analysis data specifications to automate processes in producing
analysis datasets, quality control of the data by independent programming validation, and generating Data
Definitions (define.xml) content. The result of this process is increased confidence in the quality of the data and
the reliability of the documentation.

KEY WORDS

CDISC, ADaM, Macros, SAS
®
 programming validation, analysis data specifications

INTRODUCTION

Biotechnology and pharmaceutical industry has adopted many industry standards. Recently, many more
companies in the industry have started implementation of the standards from Clinical Data Interchange Standards
Consortium (CDISC). One of the key sets of standards is Analysis Data Model (ADaM), which is used for
submitting analysis datasets, along with define.xml, to the US Food and Drug Administration (FDA). When
implementing ADaM standards, much effort is focused on how to document and maintain analysis dataset
specifications, as well as how to generate accurate analysis datasets. In this paper, we present techniques for
specifying analysis datasets, such that the specification document can be used to produce the analysis datasets,
compare the data by independent programming validation, keep analysis data and the document in sync, and
generate Data Definitions (define.xml) content. The techniques presented here are depicted by the flowchart in
Figure 1.

MAKING A LIST

Traditionally, the most important document that a SAS programmer creates is the SAS code. When a question is
raised on how a particular variable was derived, the first place a programmer will look is in the program that
created the dataset that contains the variable. We all know this type of documentation is not sufficient. Using a
SAS program as documentation has the following drawbacks:

1) Not a central location for analysis data specifications

2) Hard to perform maintenance for changes or updates

3) Cannot be used as a basis for independent validation.

http://cl.exct.net/?ju=fe27167977660279701c72&ls=fde91d7875650d7b72167871&m=fefa15797d6605&l=fe6215767d67057f7017&s=fe2c16737663067e761276&jb=ffcf14&t=
http://cl.exct.net/?ju=fe27167977660279701c72&ls=fde91d7875650d7b72167871&m=fefa15797d6605&l=fe6215767d67057f7017&s=fe2c16737663067e761276&jb=ffcf14&t=

2

Figure 1. Analysis Dataset Production Process Flow

Performing data analysis without specifications will cost time and money. Documentation saves time in overall
programming effort. With implementation of ADaM standards in mind, we have used the following analysis data
specifications. The specifications for analysis datasets are stored in a spreadsheet in a ‘metadata’ folder with the
structure described in Table 1. There is a separate specification file for each analysis dataset, with the analysis
file name as the specification file name. The advantages of this approach for analysis data documentation are

1) Having a central location for all analysis dataset specifications

2) Can be used as basis for independent validation for analysis datasets

3) Easy to maintain changes or updates to the specifications

4) The metadata information will be programmatically turned into ATTRIB statements and KEEP statements,
which are invoked by the analysis dataset program. This keeps the analysis attributes of dataset
variables in sync with the specifications

Analysis Data

Specifications and Study

Documents

Analysis Data

Program

Source

Dataset(s)

SAS Macros

%GenADaMAttribs, %{dataname}_attrib

Analysis

Dataset

Independent QC

Program

Validation

Analysis

Dataset

Compare

Program

v_compdata.sas

Validation

Report

Define.xml

content

3

5) If necessary, the specifications can also be converted to a define.xml.

DETERMINATION OF THE TYPE OF ANALYSIS DATASET AND VARIABLES

Upon the sign-off of the statistical analysis plan (SAP), analysis specifications are drafted. Most common types of
analysis datasets are:

1) Subject level analysis dataset (ADSL) – demographics, baseline characteristics, population flags

2) Basic data structure (BDS) – findings type of data

3) Time to event (ADTTE)

4) Adverse events (ADAE)

One way to ensure all the analysis variables are included in appropriate analysis datasets is to annotate mock-
shells with the names of analysis dataset and variables that will be used for summary tables, figures, and listings.
By annotation, a statistician or senior programmer analyst will determine the variable attributes. In referencing
annotated case report forms (CRFs), protocols, and SAPs, the source data name and source variable names that
will be used to derive the analysis variables can be identified. Once the type of data structure, type of variables,
source data, and derivations are determined, specifications can be developed. Table 2 shows an example of an
analysis data specification.

Table 2. Sample Analysis Specifications (not all columns are shown)

Variable
Order

Number

Variable
Name

Variable
Label

Type Length Core
Variable

Codelist Origin of
Existing
Variable

ADaM Define
Specification

1 STUDYID Study
Identifier

Char 20 Yes DM.STUDYID

2 USUBJID Unique
Subject
Identifier

Char 20 Yes DM.USUBJID

3 SUBJID Subject
Identifier for
the Study

Char 4 Yes DM.SUBJID

4 SITEID Study Site
Identifier

Char 1 Yes DM.SITEID

5 AGE Age Num 8 Yes DM.AGE

6 AGEU Age Units Char 5 DM.AGEU

Table 1: Structure of analysis dataset specifications

Column Content

Variable Order Number Integer for order in the data vector

Variable Name Name of variable

Variable Label Label of variable

Type Char or Num

Data Type text, float, or integer

Length Length of variable

Codelist Name (Optional) Name of code list

Origin of Existing Variable Name of source variable(s)

ADaM Define Specification Logic for derivation

DisplayFormat SAS format for the variable

SignificantDigit Significant digit, for numeric data

4

Table 2. Sample Analysis Specifications (not all columns are shown)

Variable
Order

Number

Variable
Name

Variable
Label

Type Length Core
Variable

Codelist Origin of
Existing
Variable

ADaM Define
Specification

7 SEX Sex Char 1 Yes DM.SEX

8 SEXN Sex (N)

Num 8 Yes SEXN Derived Derived from DM.SEX
when SEX=M then
SEXN=1, SEX=F then
SEXN=2.

9 SAFFL Safety
Population
Flag

Char 1 Yes YN Derived If a patient has at least
one record in EX
domain and
EX.EXOCCUR=Y then
SAFFL=Y. Otherwise,
SAFFL=N.

10 ITTFL Intent-To-
Treat
Population
Flag

Char 1 Yes YN Derived Derived from DM.ARM:
if DM.ARM is not blank
then ITTFL=Y.

AUTOMATED PROCESS FOR PRODUCING ANALYSIS DATASETS

Once the specifications are drafted, the SAS program for the analysis data can be created. The analysis dataset
creation program will have the same name as the dataset it produces. At the beginning of the program, there is a
call to macro %GenADaMAttribs. This macro reads the analysis specification Excel file and writes a macro
{dataset name}_attrib.sas in the local macros directory.

Sample SAS code of %GenADaMAttribs :

***** Fetch data from ADaM spec spreadsheet Variables tab *****;

 proc import

 out = SpecData

 DATAFILE = "&SpecLib.\&ADaMName..xls"

 DBMS = EXCEL

 REPLACE

 ;

 SHEET = "Variables$";

 GETNAMES = YES;

 TEXTSIZE = 2000;

 run ;

 data _null_ ;

 file "&MacroLib.\&MacroName" noprint notitles ;

 loopcnt = 1

 set SpecData (where = (Source_Tab = 'Variables')) end = _eof_ ;

***** writing AdaMKeepList ************;

 if loopcnt = 1 then put / " " @ ;

 put Variable_Name @ ;

 loopcnt + 1 ;

 if loopcnt >= 8 then loopcnt = 1 ;

 if _eof_ then put / " ;" ;

 run ;

**** Writing the contents of the ATTRIB statement for the main ADaM

**** dataset, in data vector order.;

5

 data _null_ ;

 file "&MacroLib.\&MacroName" noprint notitles mod ;

 if _N_ = 1 then

 do ;

 put / ' %let ADaMVarAttribs = ' ;

 end ;

 set SpecData (where = (Source_Tab = 'Variables')) end = _eof_ ;

 put ' ' Variable_Name @24 'length = ' @ ;

 if upcase(Type) = 'CHAR' then put '$' @ ;

 _clen = trim(left(put(Length,4.))) ;

 put _clen @ ;

 _lablen = length(Variable_Label) ;

 if index(Variable_Label, "'") = 0 then

 put @39 "label = '" Variable_Label $varying. _lablen "'" @ ;

 else put @39 'label = "' Variable_Label $varying. _lablen '"' @ ;

 if DisplayFormat ^= ' ' then do ;

 _fmtlen = length(DisplayFormat) ;

 put @92 'format = ' DisplayFormat $varying. _fmtlen @ ;

 end ;

 put ;

 if _eof_ then

 put " ;" ;

 run ;

Sample SAS macro ADSL_attrib.sas that is created by %GenADaMAttribs:

%macro ADSL_Attrib ;

 %global ADaMKeepList ADaMVarAttribs TempVarAttribs ;

 %let ADaMKeepList =

 STUDYID USUBJID SUBJID SITEID AGE AGEU SEX

 SEXN SAFFL ITTFL

 ;

 %let ADaMVarAttribs =

 STUDYID length = $20 label = 'Study Identifier'

 USUBJID length = $20 label = 'Unique Subject Identifier'

 SUBJID length = $4 label = ‘Subject Identifier for the Study’

 SITEID length = $1 label = 'Study Site Identifier'

 AGE length = 8 label = 'Age' Format=8.0

 AGEU length = $5 label = 'Age Units'

 SEX length = $1 label = 'Sex'

 SEXN length = 8 label = 'Sex (N)' Format=8.0

 SAFFL length = $1 label = 'Safety Population Flag'

 ITTFL length = $1 label = 'Intnet-To-Treat Population Flag'

;

%mend;

This macro, when invoked, will generate two macro variables:

 &ADaMVarAttribs A set of attribute statements for the variables in the metadata.

 &ADaMVarKeep A KEEP statement for the variables in the metadata.

The analysis dataset programs will invoke corresponding analysis dataset attrib macros and use the ATTRIB and
KEEP macro variables to define the variable attributes and list of variables to be included in the final output of the
analysis datasets. This process ensures the variables and their attributes match those specified in the analysis
data specifications.

6

CHECK IT TWICE

The analysis datasets are the source for the analysis results, in the form of summary tables, listings, and figures.
The accuracy and integrity of the datasets are essential to analysis conclusions in study reports. In order to
ensure the accuracy of the analysis datasets, programming validation is necessary. Validating analysis datasets
before using them to generate summary tables or figures will save review time. Finding errors in the data and in
the programs that generate analysis datasets will save rework in generating analysis results. We present a
technique of independent programming validation. In Figure 1, a programmer generates an analysis dataset
based on source data, analysis data specifications, and other study documents. A different programmer will use
the same information to create a validation analysis dataset. In theory, both datasets should match, which is the
ultimate goal of the validation. There are many sources of discrepancies, when the two datasets are compared
for the first time:

1) Different interpretations of the specifications - different programming logic.

2) Specifications did not cover methods of certain data handling and programmers used their own methods
to handle data derivations.

3) Data issues, i.e. inconsistent data, incomplete data, or missing data

4) Programming logic error

When discrepancies are found, the analysis data specifications may be updated for clarity, additional
specifications may be needed, or rules for special data handling may be defined. When programmers identified
errors in the program code, they will fix them, generate a new set of analysis datasets, compare the datasets, and
resolve discrepancies. This process continues until both datasets match. After first sorting the datasets by key
variables (&sortby), the following SAS macro V_COMPDATA was created to speed up the comparison of the
datasets.

**** Checking mismatch observations *****;

data nomatch compobs(keep=&sortby) baseobs(keep=&sortby);

 length mismatch $20.;

 merge valid(in=incomp keep=&sortby) develop(in=inbase keep=&sortby);

 by &sortby;

 if incomp and inbase then do;

 if incomp then output compobs;

 if inbase then output baseobs;

 end;

 else do;

 if incomp then mismatch="Not in develop";

 if inbase then mismatch="Not in valid";

 put _all_;

 output nomatch;

 end;

run;

***** comparing two datasets *****;

ods output compare.CompareSummary=compsum;

ods output compare.CompareVariables=varsum;

proc compare base=develop compare=valid

 criterion=.0001

 out=result outnoequal outbase outcomp outdif;

 id &keys;

run;

data summary;

 set compsum %if %sysfunc(exist(varsum)) %then varsum;;

run;

**** output to an Excel file ****;

proc export

 data= summary

 outfile = "&outfile"

 dbms = excel

7

 replace

 ;

 sheet = "&tabname Summary";

run;

GENERATING DEFINE.XML CONTENT

Using the specification structure from Table 1, most of the define.xml content will already have been documented.
The content of define.xml should also contain the following information: dataset metadata, value level metadata,
and code list.

Table 3 is an example of how to document the dataset metadata for a project. The analysis dataset label can be
set as the dataset description, by using the description of the datasets in this table.

Table 3. Sample Dataset Metadata
Dataset Description Class Structure Purpose Keys

ADSL Subject level Analysis
Dataset

Trial Design One record per subject Analysis STUDYID, USUBJID

ADAE Adverse Event
Analysis Dataset

Events One record per
adverse event per
sequence per subject

Analysis STUDYID, USUBJID,
AETERM, AESPID

ADEFF Efficacy Analysis
Dataset

Findings One record per
parameter per analysis
category per subject

Analysis STUDYID, USUBJID,
PARAMCD, ANAL1CAT

The value level metadata can be documented to specify details in parameters of findings data and how the
analysis variables are passed or derived from source data. The structure of the specification document for value
level metadata is very similar to the one for variables in Table 2. Table 4 shows is an example of value level
metadata.

Table 4. Sample Value Level Metadata

Value
Order

Number

Value Label Type Length Codelist Origin of
Existing
Variable

ADaM Define
Specification

1 DIST Distance (m) Num 8 Derived XDSTRESN when
XDTESTCD=DIST

2 SPEED Speed (m/s) Num 8 Derived XDSTRESN when
XDTESTCD=SPEED

3 MAX Maximum
Speed
Reached

Char 1 YN Derived Y, when
PARAM=SPEED if
AVAL is > baseline
maximum value; N
otherwise.

4 MIN Minimum
Speed
Reached

Char 1 YN Derived Y, when
PARAM=SPEED is if
AVAL < baseline
minimum value; N
otherwise.

Finally, a code list can be used as a source for data formatting. Table 5 shows an example of code list.

Table 5. Sample Code List
Codelist Name Data Type Code Decode Rank

LB_TOX Integer 0 GRADE 0 1

LB_TOX Integer 1 GRADE 1 2

LB_TOX Integer 2 GRADE 2 3

LB_TOX Integer 3 GRADE 3 4

8

Table 5. Sample Code List
Codelist Name Data Type Code Decode Rank

LB_TOX Integer 4 GRADE 4 5

YN Text Y YES 1

YN Text N NO 2

The information presented in Tables 2 to 5 is not only a source for define.xml content, but also a part of the
documentation of analysis data specifications.

CONCLUSION

Documentation for analysis data specifications not only helps efficient programming, but also provides a basis for
validation. We use the techniques, which have been presented in this paper, as part of our programming
guidelines. We create analysis datasets with independent programming validation, leveraging the specifications
and using SAS

®
macros to generate variable attributes. We maintain the specifications in sync with the analysis

datasets. In addition, we use SAS
®
 macros in the validation process to compare analysis datasets from both

production and independent programs to ensure the data accuracy. Furthermore, we extract information from the
specifications for define.xml content. In conclusion, the techniques help us deliver a quality product efficiently to
our clients.

REFERENCES

Validating Clinical Trial Data Reporting with SAS®, by Carol I. Matthews and Brian C. Shilling

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Elizabeth Li

PharmaStat, LLC
39899 Balentine Drive, Suite 109
Newark, CA 94560
Work Phone: 510 656-2080
Fax: 510 656-2081
elizabethli@pharmastat.com
Web: www.pharmastat.com

Linda Collins

PharmaStat, LLC
39899 Balentine Drive, Suite 109
Newark, CA 94560
Work Phone: 510 656-2080
Fax: 510 656-2081
lcollins@pharmastat.com
Web: www.pharmastat.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration.

mailto:elizabethli@pharmastat.com
http://www.pharmastat.com/
mailto:lcollins@pharmastat.com
http://www.pharmastat.com/

