
Paper AD18

Comparison of Techniques for XML and RTF Tables

Linda Collins, PharmaStat LLC, Moraga, CA
Alan Hopkins, PharmaStat LLC, Moraga, CA

ABSTRACT

Easily interpretable statistical summary tables are important for communicating results of clinical
trials. These tables typically contain simple statistics that must be obtained from more than one
SAS procedure. Consequently, statistical programmers write specialized macros for obtaining
appropriate statistics and then formatting those statistics into a table suitable for publication in a
document. It is common for SAS programs to produce ASCII text files, with additional steps
needed to incorporate this output into a larger document. Collectively this is a very labor intensive
process We discuss a method of constructing tables with statistical information in two steps: (1)
creation of a statistical results file with the needed statistics from SAS procedures, and (2)
formatting the statistical analysis file into a table for incorporation into a document processing
system using two different markup systems – rtf and xml.

BACKGROUND

Tables are typically produced in SAS by performing some preparatory data manipulations, then
running one or more procedures to generate the statistics. The statistics are then ‘printed’ to an
output file with appropriate formatting to produce a readable table.

ASCII or ‘plain-text’ outputs do not incorporate printing ‘metadata’ such as page margins, font
type and size, or other special characteristics such as boldface, italics, or special characters.
These characteristics are usually controlled by printing commands.

RTF output, by contrast, can incorporate such information as an intrinsic part of the document.
SAS RTF templates, or specialized code within the program, give the user control over a wide
variety of visual characteristics. The resulting file can be used as one of a series of appendices
to a larger report, or cut and pasted into a larger document as an in-text table. For in-text tables, it
is particularly convenient that the RTF output produced by many SAS procedures is in the form of
a Microsoft Word table.

XML output shares many of the advantages of RTF output. Visual characteristics of the report
can be stored in a related stylesheet document or imbedded as part of the document itself. XML
has the further advantage of being a useful vehicle for assembling larger sets of interrelated
documents such an electronic submission of data to regulatory agencies.

One simple way of creating a report with the statistical results file is to print the file using PROC
REPORT. The results can be captured using ODS to get RTF or XML output. In our experience,
the default RTF from ODS does not quite satisfy the rigorous publishing guidelines in some
organizations. As a result, we one might customize the ODS output using PROC TEMPLATE to
adjust style characteristics. It is also possible to use an analogous technique to create a
publishable table with XML markup.

In addition to style specifications, PROC TEMPLATE can be used to create a table specification.
The table specification allows the user to define characteristics of columnar data, store the
specification in a template, and output the results with a fairly simple DATA _NULL_. We

compare the various methods of creating statistical tables and assess how well they integrate into
downstream document publishing.

STATISTICAL RESULTS FILES

Palmer (2002) recommended creating an analysis data base for statistical results for later
formatting in an xml publishing system. Harrell (2004) has also described a system for academic
statisticians which combines S data frames into LaTeX documents. Our own SAS statistical
macros (APT software, 2004) create a statistical results file which is used for input to publishing
software. Our model for statistical tables (Hopkins and Collins, 2005) is based on ‘segments’
which describe analysis results for an analyte.

The key to a straightforward table-output system is a consistent format for the summarized data
to be published. In the APT macro system, all statistical macro calls add records to a statistics
dataset with a consistent structure. The user can request various kinds of univariate and
comparative statistics, organized by ‘segments’. A segment typically contains all the statistics
needed for a single analysis variable. The statistics are generated by one or more SAS
procedures (Univariate, FREQ), captured into SAS datasets, and then combined and reformatted
into a standard statistical file structure. The macros used to do this allow the user to request a
variety of formatting characteristics such as combinations of statistics to group on a row, the
number of decimal places, or the use of punctuation such as parentheses and percent signs.

The statistical results file contains the following columns:

By-Group Variables (optional)
Segment Number
Segment Label
Sort Order
Line Label
COL1 through COLn are the statistics for each report column.

In this standard structure, certain variables such as SEGLABL, LINLABEL, COL1 through COLn
contain information that will be displayed on the page. Other variables, such as SEG and ORD1,
are used internally in the printing routine to identify the logical grouping of lines and the order they
should appear in.

Once all the desired statistics have been generated, the file is ready for output to one or more
‘printing’ destinations. In the ‘printing’ step, some overall information is supplied by macro
parameters to describe other necessary information to document the analysis, e.g. table numbers
and titles, etc.

CONVERTING STATISTICAL RESULTS FILES TO PUBLISHABLE TABLES

ASCII output:

A finished statistical table of a clinical study might look like the following (data published by
Diabetes Control and Complications Trial Research Group.,1993):

 DCCT Study: Baseline Characteristics of Two Study Cohorts
__
 Primary Prevention Secondary Intervention
 Conventional Intensive Conventional Intensive
 (N=378) (N=348) (N=352) (N=363)
__

Duration of IDDM (yrs)

 N 378 348 352 363
 Mean (SD) 30.7 (16.7) 31.4 (16.5) 103.1 (44.4) 106.2 (45.2)
 Median 27.0 29.0 103.5 112.0
 Range 8.0 to 133.0 9.0 to 142.0 13.0 to 179.0 10.0 to 180.0

Glycosolated Hemoglobin (%)

 N 378 348 352 363
 Mean (SD) 8.8 (1.7) 8.8 (1.6) 8.9 (1.5) 9.0 (1.5)
 Median 8.5 8.6 8.7 8.8
 Range 5.4 to 14.8 5.8 to 14.4 6.0 to 14.2 6.4 to 14.3

Presence of Clinical Neuropathy

 No 368 97.9% 329 95.1% 319 90.6% 328 90.6%
 Yes 8 2.1% 17 4.9% 33 9.4% 34 9.4%

Presence of Clinical Neuropathy

 Chi-Square P-value 0.041 0.994
 (Conventional v.
 Intensive)

 The statistical results file would look something like the following (partial display):

seg seglabl ord1 linlabel col1 col2

 1 Duration of IDDM (yrs) 1 N 378 348
 1 Duration of IDDM (yrs) 2 Mean (SD) 30.7 (16.7) 31.4 (16.5)
 1 Duration of IDDM (yrs) 3 Median 27.0 29.0
 1 Duration of IDDM (yrs) 4 Range 8.0 to 133.0 9.0 to 142.0
 2 Glycosolated Hemoglobin (%) 1 N 378 348
 2 Glycosolated Hemoglobin (%) 2 Mean (SD) 8.8 (1.7) 8.8 (1.6)
 2 Glycosolated Hemoglobin (%) 3 Median 8.5 8.6
 2 Glycosolated Hemoglobin (%) 4 Range 5.4 to 14.8 5.8 to 14.4
 3 Presence of Clinical Neuropathy 1 No 368 97.9% 329 95.1%
 3 Presence of Clinical Neuropathy 2 Yes 8 2.1% 17 4.9%
 4 Presence of Clinical Neuropathy 1 Chi-Square P-value 0.041
 (Conventional v.
 Intensive)

(Note: linlabel value for the last record is word wrapped)

The table-generating macro performs some preprocessing to determine the spacing requirements
for the report, and stores them in macro variables. It then performs a PROC REPORT like the
following (simplified) example code which is set up for a plain ASCII output:

 title1 "DCCT Study: Baseline Characteristics of Two Study Cohorts";
 proc report data = bstats split='~' missing spacing = 1 nowindows headline list headskip ;

 column (“__” seg seglabl dummy linlabel
 ("Primary Prevention" col1 col2)
 ("Secondary Intervention" col3 col4)) ;

 define seg /order order = internal width = 0 spacing = 0 noprint ;
 define seglabl /order order = data width = 0 spacing = 0 noprint ;
 define dummy /order order = internal width = 15 spacing = 0 " " ;
 define linlabel /order order = internal flow width = 15 spacing = 0 " " ;
 define col1 / display width= 18 " Conventional ~ (N=&c1) ~";
 define col2 / display width= 18 " Intensive ~ (N=&c2) ~" ;

 define col3 / display width= 18 " Conventional ~ (N=&c3) ~";

 define col4 / display width= 18 " Intensive ~ (N=&c4) ~" ;

 compute before seglabl /;
 line @1 seglabl $94. ;
 endcomp ;
 break after seglabl / skip ;
 run ;

This printing step takes advantage of several useful PROC REPORT features.

 It uses spanned column headers to display the text of ‘Primary Prevention’ and
‘Secondary Intervention’,
The overline over the column headings is also generated as a spanned column header
by placing the “__” in the column statement with parentheses around all the variables it is
to span.

 The ‘headline’ option in the procedure statement generates the underline under the
column headings.

 The ‘line’ statement prints the text of the segment label on a separate line when the
segment changes.

 A preprocessing step has put a split character (~) and imbedded spaces into the
LINLABEL variable to control where the word wrapping occurs, and to indent by two
spaces when it does. For this example, then, the record:

seg seglabl ord1 linlabel col1 col2
4 Presence of Clinical Neuropathy 1 Chi-Square P-value 0.041
 (Conventional v.
 Intensive)

is converted to:

seg seglabl ord1 linlabel col1 col2
4 Presence of Clinical Neuropathy 1 Chi-Square P-value 0.041
 ~ (Conventional v.
 ~ Intensive)

The split character and inserted spaces give a more readable indentation in the finished report.

RTF output:
The same table rendered as an RTF output could look like:

 Primary Prevention Secondary Intervention

 Conventional

 (N=378)
 Intensive
 (N=348)

 Conventional
 (N=352)

 Intensive
 (N=363)

Duration of IDDM (yrs)
 N 378 348 352 363
 Mean (SD) 30.7 (16.7) 31.4 (16.5) 103.1 (44.4) 106.2 (45.2)
 Median 27.0 29.0 103.5 112.0
 Range 8.0 to 133.0 9.0 to 142.0 13.0 to 179.0 10.0 to 180.0
Glycosolated Hemoglobin (%)
 N 378 348 352 363
 Mean (SD) 8.8 (1.7) 8.8 (1.6) 8.9 (1.5) 9.0 (1.5)
 Median 8.5 8.6 8.7 8.8
 Range 5.4 to 14.8 5.8 to 14.4 6.0 to 14.2 6.4 to 14.3
Presence of Clinical Neuropathy
 No 368 97.9% 329 95.1% 319 90.6% 328 90.6%
 Yes 8 2.1% 17 4.9% 33 9.4% 34 9.4%

 Primary Prevention Secondary Intervention

 Conventional

 (N=378)
 Intensive
 (N=348)

 Conventional
 (N=352)

 Intensive
 (N=363)

Presence of Clinical Neuropathy
 Chi-Square P-value

(Conventional v.
Intensive)

 0.041 0.994

Several items must be added to – and subtracted from - the code to enable RTF characteristics.
First, we set up code to generate a style sheet using PROC TEMPLATE. This is not required, as
SAS will assume a default style for the RTF destination. However, it is often desirable to make
modifications to the default style. In this case, we have set up a macro that allows us to control
settings that we may want to vary.

%macro rtfstyle (
 name = tempstyle ,
 fontname = Times New Roman ,
 fontsize = 10 ,
 cellpad = 0.05 ,
 cellspac = 0.02 ,
 orient = landscape
);

options orientation=&orient ;
ods escapechar="^";

 proc template;
 define style &name ;
 parent=styles.rtf; /* Base the style on the default RTF style */
 style Table from output /
 Rules=groups /* Draw line between headings and detail */
 Frame= box /* Draw box around the entire table */
 cellpadding = &cellpad.in
 cellspacing = &cellspac.in
 borderwidth = &cellspac.in
 ;
 style body from document /
 topmargin = 1.25in /* Control document margins */
 bottommargin = 1.00in
 leftmargin = 1.00in
 rightmargin = 1.00in
 ;
 style header from header /
 background=_undef_
 protectspecialchars=off
 asis=on
 ;

 replace fonts /
 'TitleFont2' = ("&fontname",&fontsize.pt,Bold Italic)
 'TitleFont' = ("&fontname",&fontsize.pt)
 'StrongFont' = ("&fontname",&fontsize.pt,Bold)
 'EmphasisFont' = ("&fontname",&fontsize.pt,Italic)
 'FixedEmphasisFont' = ("&fontname",&fontsize.pt,Italic)
 'FixedStrongFont' = ("&fontname",&fontsize.pt,Bold)
 'FixedHeadingFont' = ("&fontname",&fontsize.pt,Bold)
 'BatchFixedFont' = ("&fontname",&fontsize.pt)
 'FixedFont' = ("&fontname",&fontsize.pt)
 'headingEmphasisFont' = ("&fontname",&fontsize.pt,Bold Italic)
 'headingFont' = ("&fontname",&fontsize.pt,Bold)
 'docFont' = ("&fontname",&fontsize.pt)
 ;
 end;
 run;

%mend ;

The PROC REPORT code itself needs to be modified in several ways for RTF output:

ods rtf file = "&progname..rtf" style = tempstyle ;
ods eschapechar=’^’;

title1 "DCCT Study: Baseline Characteristics of Two Study Cohorts";
proc report data = bstats split='~' missing spacing = 1 nowindows headline list headskip ;
 column /* (“__” */
 seg seglabl dummy linlabel
 ("Primary Prevention" col1 col2)
 ("Secondary Intervention" col3 col4) /*) */ ;

 define seg / order order = internal width = 0 spacing = 0 noprint ;

 define seglabl / order order = data width = 0 spacing = 0 noprint ;
 define dummy / order order = internal width = 15 spacing = 0
 style(column)=[asis=off cellwidth=0.25in] " " ;

 define linlabel / order order = internal flow width = 15 spacing = 0
 style(column)=[asis=off cellwidth=1.25in] " " ;

 define col1 / display width= 18 " Conventional ~ (N=&c1) ~"
 style(column)=[asis=on cellwidth=1.58in] ;

 define col2 / display width= 18 " Intensive ~ (N=&c2) ~"
 style(column)=[asis=on cellwidth=1.58in] ;
 {additional define statements}
 compute before seglabl / style=[cellwidth=0.25in] ;
 line @1 seglabl $94. ;
 endcomp ;
 break after seglabl / skip ;
 run ;
ods rtf close ;

The ODS RTF statement will redirect output to the RTF destination named in ‘file=’. The ‘style=’
specifications tells SAS that we want to use the style definition ‘tempstyle’ that we just defined.

What’s changed in this code? We need alternative techniques for several features of this report.

• RTF output from PROC REPORT will not honor the width specification in characters on
the define statements. For controlling width, we add explicit widths with the
“style(column)=[cellwidth=n.nnin]”. The ‘ASIS=ON’ portion of this statement tells SAS to
honor the leading spaces in the data field.

• The overline and underline around the column headings must be suppressed and
replaced with RULES=GROUPS in the RTF style template.

• RTF output from PROC REPORT will also not honor split characters. We replace the
split character in the LINLABEL variable with RTF code for an imbedded hanging indent.
In the preprocessing of the data file, instead of inserting split characters, we insert RTF
control codes. The control code shown below tells Word to format the cell with a line
indent (\li) of 0.25 inches (expressed in “twips” or 1/1440 of an inch) and a first-line indent
(\fi) of -0.25 inches. The line

 ods escapechar=’^’;
is needed for the beginning sequence ^R to be recognized as an RTF control code.

seg seglabl ord1 linlabel col1 col2

4 Presence of Clinical Neuropathy 1 ^R”\li360\fi-360 “ 0.041
 Chi-Square P-value
 (Conventional v.
 Intensive)

There are several very useful differences to this type of output. When the output is opened by
Mocrosoft Word, the output exists as a Word table, not just text. The table can be selected and

pasted into another document for use as an ‘in-text’ table, and column boundaries can be moved
without retyping any of the internal text. Because we have set up the indentation as part of the
cell characteristics, it will be maintained and word wrap correctly even if the table columns are
resized.

There are also a couple of unsatisfying aspects to this approach. First, although the RTF
specification has been published (documentation is available on the Microsoft web site), it is
awkward to insert control codes into the dataset. The control codes mean that this print procedure
cannot be used to simultaneously write output to multiple destinations (e.g. directing the same
report to ASCII, PDF, XML, and RTF) because the other destinations would not interpret the
control codes. This would be better handled by options in SAS, although as of this writing SAS
does not support any such options.

Another problem is that SAS does not have complete control over how spacing in handled once
the document is opened in Word. It is common for tables to ‘break’ into panels if the horizontal
spacing is too tight. This results in an output table with the last few columns printed at the bottom
of the page or on a following page in a separate block. For most clinical applications, this is
unacceptable. One known problem in SAS 8.2 is that spanned columns (such as the spanned
column headers) can cause SAS to ignore explicit column width settings. This further
exacerbates the problem of panels breaking across pages. This problem has been alleviated in
SAS 9.1.3. However, it is still not possible for SAS to force all columns to stay on the same page,
and adjusting horizontal spacing is often a matter of trial and error.

CREATING STATISTICAL RESULTS FILES AS PUBLISHABLE TABLES IN XML

A similar technique can be used to produce a table in XML. This example uses two different types
of XML destinations, XML and MARKUP. The syntax is slightly different, but the XML code
produced is the same. In both cases, the PROC REPORT produces both a table file (the .xml
output) and a style sheet (the .xsl output). The MARKUP example also causes the procedure to
produce a ‘document type definition’ (.dtd) file.

ods xml file = "&progname.1.xml" code="&progname.1.xsl" style = docbook;
ods markup body = "&progname.2.xml" code="&progname.2.xsl" style = docbook
 frame ="&progname.2.dtd" tagset = default ;

title1 "DCCT Study: Baseline Characteristics of Two Study Cohorts";
proc report data = bstats split='~' missing spacing = 1 nowindows headline list headskip ;
 {additional PROC REPORT statements as shown in RTF example}
run ;
ods xml close ;

The output produced, if viewed by any ASCII editor such as Notepad, looks like this (partial print):

<?xml version="1.0" encoding="windows-1252"?>
<odsxml>
<head>
<meta operator="Linda"/>
</head>
<body>
<proc name="Report">
<label name="IDX"/>
<title class="SystemTitle" toc-level="1">DCCT Study: Baseline Characteristics of Two Study
Cohorts</title>
<branch name="Report" label="The Report Procedure" class="ContentProcName" toc-level="1">
<leaf name="Report" label="Detailed and/or summarized report" class="ContentItem" toc-level="2">
<output name="Report" label="Detailed and/or summarized report" clabel="Detailed and/or summarized
report">
<output-object type="table" class="Table">
 <style>
 <border spacing="1" padding="7" rules="GROUPS" frame="BOX"/>
 </style>
<colspecs columns="4">
<colgroup>
<colspec name="1" width="0" align="center" type="string"/>

<colspec name="2" width="0" align="center" type="string"/>
<colspec name="3" width="0" align="center" type="string"/>
<colspec name="4" width="0" align="center" type="string"/>
</colgroup>
</colspecs>
<output-head>
<row>
<data type="string" class="Header" row="1" column="1" column-end="2">
 <style>

 </style>

<value></value>

</data>
<data type="string" class="Header" row="1" column="3" column-end="4">
 <style>

 </style>
<value>Primary Prevention</value>
</data>
</row>
<row>
<data type="string" class="Header" row="2" column="1" column-end="2">
 <style>

 </style>
<value></value>
</data>
<data type="string" class="Header" row="2" column="3">
<value> Conventional
 (N=378) </value>

What do we do with this? XML documents can be viewed by a number of editors and browsers,
such as Internet Explorer, Netscape, XMLSpy by Altova, Epic by Arbortext, and others

There are two limitations to this output produced by SAS as of this writing. First, the XML file
produced by SAS does not automatically contain a link between the document and the descriptive
information contained in the DTD or the style sheet. Any viewing software needs at least one of
these descriptive documents to allow it to interpret the XML table. We can correct this by editing
the document and manually inserting the link. We edit the file ‘example_report1.xml’ and type in
the second line (shown in boldface). The href= contains the name of the stylesheet document we
want to reference:

<?xml version="1.0" encoding="windows-1252"?>
<?xml-stylesheet type="text/xsl" href="example_report1.xsl"?>
<odsxml>
<head>

This tells the XML editor that the document should be viewed using the style sheet file.
The second problem is that the tagsets used by SAS contain an error as of this writing. In the
style sheet file, a tagset is missing a closing tag. We can correct this by editing the stylesheet file
‘example_report1.xsl’:

 <LINK REL="STYLESHEET" HREF="example_report1.xsl"/>

The tagset LINK is missing a closing forward slash. This is needed for this to be a ‘well-formed’ or
valid XML document. Add it inside the closing bracket ‘>. Having made these two edits, we can
open the file using Internet Explorer. Other XML editors or browsers could also be used.

The real value of an XML output, though, is not in viewing it as a standalone document. XML is
increasing used as a vehicle for organizing large sets of interrelated documents, data, graphics,
and other objects We anticipate that eventually electronic submissions of clinical data to
regulatory agencies will use XML to organize clinical study reports, tables, graphical displays, and
the underlying data in a form that can be navigated within a single tool. Many organizations now

do something like this by using document management software to link documents in PDF
format. XML applications will be likely to improve on this process in the future. In such an
application, the compiled set of document will most likely use a global DTD such as the CALS
table model.

CREATING STATISTICAL TABLES IN XML AND RTF WITH TABLE TEMPLATES

PROC REPORT is not the only way to produce tabular output in SAS. By default, each procedure
is associated with a ‘table template’, which is stored in the SAS ‘template store’. We can also use
the TEMPLATE procedure to write table definitions from scratch, or to modify existing ones. To
see the default templates associated with SAS procedures, open the template store by typing in
the command line of SAS the word ‘ODSTemplate’. You can then navigate to the default template
for various SAS outputs.

The default template for a procedure can be modified and used directly for output from that
procedure, although we do not discuss that technique in detail here. The master template store
can also be used as a set of models for writing our own template, which can be applied to our
own reformatted statistics dataset using a DATA _NULL_.

Many SAS programmers remember applications using DATA _NULL_ with extensive and
complicated line control and put statements. Using a table template, much of this can be reduced
to the statement ‘put _ods_’. In this example, we have used PROC TEMPLATE to set up a table
template for our statistics file, and a the PUT ODS technique to write the file to our ODS
destinations

This command opens the SAS
template store

These are the default table
templates available for ODS
outputs from PROC FREQ

The following sample code shows how a simple table template can be defined and used:
.

/* -- */
/* Create table template */
/* -- */
 proc template ;
 define table mytab.apt ;
 mvar colhd1 ch1 ch2 ; /* Make macro variables available to template */
 column segl lin c1 c2 ;
 header hdr1 hdr2a hdr2b ;
 define header hdr1;
 text colhd1 ;
 style=header{font_size=11pt} ;
 start=c1 ; /* span columns c1 */
 end =c2 ; /* through c2 */
 split = '~' ;
 end ;
 define header hdr2a;
 text ch1 ;
 style=header{font_size=10pt} ;
 start=c1 ;
 end =c1 ;
 split = '~' ;
 end ;
 define header hdr2b;
 text ch2 ;
 style=header{font_size=10pt} ;
 start=c2 ;
 end =c2 ;
 split = '~' ;
 end ;
 define segl ;
 generic=on ;
 header = " ";
 blank_dups=on;
 style = [cellwidth=2.0in] ;
 glue = 325 ;
 end ;
 define lin ;
 generic=on ;
 header = " ";
 style = [cellwidth=1.0in] ;
 glue = 325 ;
 flow ;
 end ;
 define c1 ;
 generic=on ;
 header = " ";
 style = [cellwidth=1.5in] ;
 glue = 325 ;
 end ;
 define c2 ;
 generic=on ;
 header = " ";
 style = [cellwidth=1.5in] ;
 glue = 325 ;
 end ;
 end ;
 run ;

/* -- */
/* Redirect output to ODS destinations */
/* -- */
%rtfstyle (
 name = tempstyle ,
 orient = portrait ,
 fonttype = Courier New ,
 fontsize = 7
) ;

 ods xml file = "exampleapt1.xml" code ="exampleapt1.xsl" style = docbook ;
 ods markup body = "exampleapt2.xml" frame ="exampleapt2.dtd" code="exampleapt2.xsl"
 tagset = default ;
 ods rtf file = "exampleapt.rtf" style = tempstyle ;

/* -- */
/* Generate the report */
/* -- */

 %let colhd1 = Primary~Prevention ;
 %let ch1n = 378 ;
 %let ch2n = 348 ;
 %let ch1 = Conventional~(N=&ch1n) ;
 %let ch2 = Intensive~(N=&ch2n) ;

 data _null_ ;
 set bstats ;
 file print ods = (template = "mytab.apt"
 columns=(
 segl=seglabl(generic=on)
 lin=linlabel(generic=on)
 c1=col1(generic=on)
 c2=col2(generic=on)
)
) ;
 put _ods_ ;
 run ;
 ods xml close ;
 ods rtf close ;
 ods markup close ;

In the table template, the ‘mvar’ statement gives the template access to macro variable values. It
is important to use this technique rather than the “¯ovar” syntax if the macro variable needs
to be resolved at the time the report is produced, rather than at the time the table template is
compiled (keep in mind that the table template may be stored in a template store and used for
multiple reports). The ‘define header’ statements describe the column headers, and may
incorporate spanned headers using the ‘start’ and ‘end’ statements.

After setting up our usual ODS redirection statements, the data step opens the statistics dataset
for input , binds the table template as the format for its output, and produces the reports with the
‘put _ods_ ‘ statement. The resulting RTF file looks like this (XML output is similar):

Primary
Prevention

Conventional
(N=378)

Intensive
(N=348)

Duration of IDDM (yrs) N 378 348

 Mean (SD) 30.7 (16.7) 31.4 (16.5)

 Median 27.0 29.0

 Range 8.0 to 133.0 9.0 to 142.0

Glycosolated Hemoglobin (%) N 378 348

 Mean (SD) 8.8 (1.7) 8.8 (1.6)

 Median 8.5 8.6

 Range 5.4 to 14.8 5.8 to 14.4

Presence of Clinical Neuropathy No 368 97.9% 329 95.1%

 Yes 8 2.1% 17 4.9%

 Chi-Square P-
value

 0.041

This technique has potential applicability for defining a standard table structure that could be used
for any report, and storing it as either a master template or as a macro that sets up table
definitions with certain overridable parameters. This can be a particularly powerful technique
when a well-defined standard data structure for statistical output is available, such as the data
structure used by the APT macros. The production of tables using the data _null_ would then
require very little code and would be usable for multiple ODS destinations.

This technique does not, however, replicate all the features available in our PROC REPORT
technique. We were able to mimic the spanned column header behavior of PROC report. We do
not, however, have an analog to the COMPUTE block that allows certain lines to be written
conditionally at the beginning or end of a group of records. The segment label, therefore, can only
be written as a column, not as a LINE statement.

CREATING CUSTOM TAGSETS IN XML

The XML created by ODS XML engine was meant to stand alone – a DTD and style sheet are
required. We tested one alternative. We took the docbook tagset distributed with SAS 9.1.3 and
created a custom apt_tagset which included only the tags necessary for creating OASIS-
compatible table specifications (Walsh, 1999). When used in conjunction with the “mytab.apt”
table template we created OASIS-compatible table descriptions.

proc template;
 define tagset apt_table;
 define event show_charset;
 set $show_charset "1" /if ^exists(suppress_charset);
 end;
 define event put_value;
 put VALUE;
 end;
 define event put_value_cr;
 put VALUE NL;
 end;
 define event dynamic;
 put "Content-Type: text/xml" NL NL NL;
 end;
 define event doc;
 trigger show_charset;
 put "<?xml version=""1.0""";
 putq " encoding=" encoding /if exists($show_charset) ;
 put "?>" NL NL;
 /* For compatibility with Arbortext Epic editor */
 put "<!DOCTYPE book PUBLIC ""-//Arbortext//DTD DocBook XML V4.0//EN"" ""axdocbook.dtd"">";
 put NL NL;
 end;
 {additional tagset definition statements}
 end;
run;
 ods markup body = "exampleapt5.xml" tagset = apt_table ; /* Custom Tag set for processing tables */

/* -- */
/* Generate the report */
/* -- */

 data _null_ ;
 set bstats ;
 file print ods = (template = "mytab.apt"
 columns=(
 segl=seglabl(generic=on)
 lin=linlabel(generic=on)
 c1=col1(generic=on)
 c2=col2(generic=on)
)
) ;
 put _ods_ ;
 run ;

The markup created by SAS is an output file that may be viewed directly from a XML editor as
shown below. Alternatively, these XML tables could be stored and links built from XML
documents to create dynamic documents.

SUMMARY

Creating statistical tables involves at least two steps: first, generating the statistics and second,
formatting the statistics for publishing in a document. We have found that SAS can create
statistical files from multiple SAS procedures. We have tested two markup languages for
incorporating the results into documents – Rich Text Format (RTF) and XML. Using SAS ODS
and PROC TEMPLATE we were able to create publishable tables (with some difficulty) for both
output destinations. Among the computing approaches considered, none was completely
satisfactory.

The choice of markup language will be dictated by the authoring environment for the publication
of results. Clearly RTF is the preferred choice for creating MS Word documents. We learned
however, that the connection between SAS and RTF, although powerful in many respects, can be
complex and require considerable tuning. Some table characteristics such as breaking of panels
for horizontal spacing, are hard to control via SAS code. Finally, some characteristics that we
would like to control, such as cell indentation, do not have ‘hooks’ in SAS at this time.

XML has a lot of appeal because of its ability to integrate data with text. The information can be
processed and transformed easily. Th OASIS table models is simple and straight forward.
However, creating XML makes sense when using a XML authoring environment which is not
common in the industry today. XML authoring is more complicated than simple word processing
involving document schemas, style sheets and tags. Significant technical support is definitely
required to get started in the XML environment.

The scenario considered in this paper represents an elementary approach to the dissemination of
statistical results – generate tables, then write the report. Another approach is to integrate the
data analysis and the document by embedding the analysis within the document itself. We
should be working toward the simultaneous documentation of process, workflow, and generation

of statistical results. This is called Literate Statistical Practice by Rossini and Leisch (2003).
Literate statistics discourages the construction of many little unconnected pieces and focuses on
producing a representation of the whole data analysis project. Understandable, documented,
reproducible analysis increases the comprehension of others and is critical for acceptance of
results especially in a regulated environment.

Choice of the publishing environment will be a critical choice in the ability to document statistical
analyses in the future. Overall we feel the industry has a long way to go to achieve a goal of
literate statistical practice.

REFERENCES

APT Software Library (2004). Copyright © Hygia Biostat, Inc., Oakland, CA.

Diabetes Control and Complications Trial Research Group. (1993) The effect of intensive
treatment of diabetes on the development and progression of long-term complications in insulin-
dependent diabetes mellitus. New England Journal of Medicine 329:977-986.

Hopkins, A. and Collins, L. (2005) Statistical Table Specifications and Automatic Code
Generation using XML. PharmaSUG 2005 Proceedings.

Palmer, Michael. (2002) "XML Erases the Barriers between Data and Documents in Clinical
Research". Zurich Biostatistics, Inc.

Harrell, F.E. Statistical Tables and Plots using S and LATEX, February 15, 2004.
http://biostat.mc.vanderbilt.edu/twiki/pub/Main/StatReport/summary.pdf.

Rossini, A.. and Leisch, F. (2003) Literate Statistical Practice. Berkeley Electonic Press.
http://www.bepress.com/uwbiostat/paper194

Walsh, N. (1999). “Organization for the Advancement of Structured Information Standards”
Technical Memorandum TR 9901. www.oasis-open.org/specs/tm9901.htm

